

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER EXAMINATION JUNE 2023

Program: Final Year B. Tech.

Duration: 03 Hrs.

Course Code: OE-BTM712

Maximum Points: 100

Course Name: Introduction to Research Methodology

Semester: VIII

Notes:

Pinalyear BTech (mech) Sem- VIII

1. Attempt any FIVE questions

2. Each question carries equal marks

3. Assume suitable data wherever necessary and justify the same

Q.No.	Questions	Points	CO	BL	PI
•	 a) What is of more value to the corporate world – basic or applied research? Justify your reasoning. b) A lot of business magazines conduct surveys, for example the best 	10			
1	b) A lot of business magazines conduct surveys, for example the best engineering colleges in the country; the top ten banks in the country. What do you think of these studies, would you call them research? Why/ why not?	10	1	1,2	12.3
	 a) The diet drink manufacturer in the study finds that young women are more health conscious and are looking at low calories option. Thus, any communication or advertisement for the product has to emphasize the health aspect. The purchase probability is also influenced by their education level and the nature of their profession. Other factors such as available brands, celebrity endorsement and dieticians' recommendations also have an impact on them. (1) Identify your research problem. (2) Is it possible to generate a theoretical framework for the study? 	10			
,	b) How would you define research design? What are the significant elements of research design? Illustrate with examples.	10	1	1,2	12.1
2	a) Explain any four popular search engines used for technical articles.	10			
3	b) Describe steps in the Literature Review Process.	10	1	1,2	12.1
	a) Explain secondary sources of data collection.b) Explain quantitative data visualizations techniques in details (any	10	3	1,2	12.1
4	two techniques). a) Calculate the standard deviation for the following data: \[\begin{array}{c c c c c c c c c c c c c c c c c c c	10	3	194	12.1
5	the constant a and b. Also calculate the correlation coefficient. X 4 6 9 13 18 24 32 40 Y 9 12 16 23 30 39 51 63	10	2	3	5.1

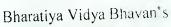
SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER EXAMINATION JUNE 2023

	a)	Based of to give on 10 (quinta 14.3,12	an yie) ran ls/hect	ld of 1: idomly are)	2.0quii sele	ntals pe ected were	er hecta farme	are. The rs' f	e varie ields. corded	ty was The	tested yield as	10				
		confirm		•			•		*							į
	b)	The fol	_	,				_	•							
		rubber					ave be	en drav	vn inde	epende	ntly.		1			
1		Test for	r their	mean d	lifferer	ice.							1			ĺ
		Type	6.21	5.70	6.04	4.47	5.22	4.45	4.84	5.84	5.88					ĺ
1		I	5.82	6.09	5.59	6.06	5.59	6.74	5.55					1		
-		Type	4.28	7.71	6.48	7.71	7.37	7.20	7.06	6.40	8.93					13
6		II	5.91	5.51	6.36							10	2	3	5.1	
		What a										10				_
1	b)	Explair	n differ	ent ref	erencir	ig forn	nats us	ed in re	eport a	nd writ	e one		į			
7		exampl				_						10	4	2	12.1	

aule . .: Critical Values of F-Distribution (at 5 per cent)


		Can Filther					Twis-	J PCI CL	-114/	
		2	3	4	5	6	8	12	24	∞
. V ₂										
1	161.4	199.5	215.7	224.6	230.2	234.0	238.9	243.9	249.1	243.3
2	18.51	19.00	19.16	19.25	19.30	19.33	19.37	19.41	19.45	19.50
3	10.13	9.55	9.28	9.12	9.01	8.94	8.85	8.74	8.64	8.53
4	7.71	6.94	6.59	6.39	6.26	6.16	6.04	5.91	5.77	5.63
5	6.61	5.79	5.41	5.19	5.05	4.95	4.82	4.68	4.53	4.36
6	5.99	5.14	4.76	4.53	4.39	4.28	4.15	4.00	3.84	3.67
7	5.59	4.74	4.35	4.12	3.97	3.87	3.73	3.57	3.41	3.23
8	5.32	4.46	4.07	3.84	3.69	3.58	3.44	3.28	3.12	2.93
9	5.12	4.26	3.86	3.63	3.48	3.37	3.23	3.07	2.90	2.71
10	4.96	4.10	3.71	3.48	3.33	3.22	3.07	2.91	2.74	2.54
11	4.84	3.98	3.59	3.36	3.20	3.09	2.95	2.79	2.61	2.40
12	4.75	3.88	3.49	3.26	3.11	3.00	2.85	2.69	2.51	2.30
13	4.67	3.80	3.41	3.18	3.02	2.92	2.77	2.60	2.42	2.21
14	4.60	3.74	3.34	3.11	2.96	2.85	2.70	2.53	2.35	2.13
15	4.54	3.68	3.29	3.06	2.90	2.79	2.64	2.48	2.29	2.07
16	4.49	3.63	3.24	3.01	2.85	2.74	2.59	2.42	2.24	2.01
17	4.45	3.59	3.20	2.96	2.81	2.70	2.55	2.38	2.19	1.96
18	4.41	3.55	3.16	2.93	2.77	2.66	2.51	2.34	2.15	1.92
19	4.38	3.52	3.13	2.90	2.74	2.63	2.48	2.31	2.11	1.88
20	4.35.	3.49	3.10	2.87	2.71	2.60	2.45	2.28	2.08	1.84
21	4.32	3.47	3.07	2.84	2.68	2.57	2.42	2.25	2.05	1.81
22	4.30	3.44	3.05	2.82	2.66	2.55	2.40	2.23	2.03	1.78
23	4.28	3.42	3.03	2.80	2.64	2.53	2.38	2.20	2.01	1.76
24	4.26	3.40	3.01	2.78	2.62	2.51	2.36	2.18	1.98	1.73
25 ~	4.24	3.38	2.99	2.76	2.60	2.49	2.34	2.16	1.96	1.71
26	4.22	3.37	2.98	2.74	2.59	2.47	2.32	2.15	1.95	1.69
9 27	4.21	3,35	2.96	2.73	2.57	2.46	2.31	2.13	1.93	1.67
28	4.20	3.34	2.95	2.71	2.56	2.45	2.29	2.12	1.91	1.65
29	4.18	3.33	2.93	2.70	2.54	2.43	2.28	2.10	1.90	1.64
30	4.17	3.32 ·	2.92	2.69	2.53	2.42	2.27	2.09	1.89	1.62
40	4.08	3.23	2.84	2.61	2.45	2.34	2.18	2.00	1.79	151
60	4.00	3.15	2.76	2.52	2.37	2.25	2.10	1.92	1.70	1.39
120	3.92	3.07	2.68	2.45	2.29	2.17	2.02	1.83	1.61	1.25
∞	3.84	2.99	2.60	2.37	2.21	2.10	1.94	1.75	1.52	1.00

 v_1 = Degrees of freedom for greater variance.

 v_2 = Degrees of freedom for smaller variance.

Table : Critical Values of Student's AUXINDUITOR

		Level of si	gnificance for t	wo-tailed test			
d.f.	0.20	0.10	0.05	0.02	0.01	d.f.	
		Level of si	gnificance for o	one-tailed test			
	0.10	0.05	0.025	0.01	0.005		
1	3.078	6.314	12.706	31.821	63.657	1	
2	1.886	2.920	4.303	6.965	9.925	2	2
3	1.638	2.353	3.182	4.541	5.841	3	
4	1.533	2.132	2.776	3.747	4.604	4	
5	1.476	2.015	2.571	3.365	4.032	5	
6	1.440	1.943	2.447	3.143	3.707	6	
7	1.415	1.895	2.365	2.998	3.499	7	
8	1.397	1.860	2.306	2.896	3.355	8	
9	1.383	1.833	2.262	2.821	3.250	9	
10	1.372	1.812	2.228	2.764	3.169	10	
11	1.363	1.796	2.201	2.718	3.106	11	
12	1.356	1.782	2.179	2.681	3.055	12	
13	1.350	1.771	2.160	2.650	3.012	13	
14	1.345	1.761	2.145	2.624	2.977	14	
15	1.341	1.753	2.731	2.602	2.947	15	
16	1.337	1.746	2.120	2.583	2.921	16	
17	1.333	1.740	2.110	2.567	2.898	17	
18	1.330	1.734	2.101	2.552	2.878	18	
19	1.328	1.729	2.093	2.539	2.861	19	
20	1.325	1.725	2.086	2.528	2.845	20	
21	1.323	1.721	2.080	2.518	2.831	21	
22	1.321	1.717	2.074	2.508	2.819	22	0-100
23	1.319	1.714	2.069	2.500	2.807	23	
24	1.318	1.711	2.064	2.492	2.797	24	
25	1.316	1.708	2.060	2.485	2.787	25	
26	1.315	1.706	2.056	2.479	2.779	26	
27	1.314	1.703	2.052	2.473	2.771	27	114
28	1.313	1.701	2.048	2.467	2.763	28	
29	1.311	1.699	2.045	2.462	2.756	29	
Infinity	1.282	1.645	1.960	2.326	2.576	Infinity	

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End Sem Examination June 2023

Program: Mechanical Engineering

Duration: 3 Hrs

Course Code: PE BTM 733

Maximum Points: 100

Course Name: Industrial Robotics

Semester: VIII

1. Q.1 is compulsory and
2. Salva are F.

2. Solve any Four out of Q.2 to Q.7

Q.No.	Questions	Points	со	BL	Module No.
	Discuss types of Automation with suitable examples	05	I	1	I
<u>la</u>	Enlist the Laws of Robotics and AI with the definition of	05	ΙV	2	II
1b	Explain the types of grippers with neat sketches	05	I	3	II
1c	Comment on Social issues and economics of Robotics	05	IV	2	VII
ldle	Discuss the factors which determine the WSE	05	1	3	II
_	Discuss different types of drives with merits and demerits and various motors used.	10.	III	3	II
2a 2b	Explain the specification of the robot and various sensors	10	III	2	III
3a	Discuss the degree of freedom and the factors on which it depends.	10	-	3	II
3b	What are different robot motions considered for the programming of the Robot e.g. Body motion and wrist motions. How to program a Robot.	10	II	3	III
4a	Introduce Robot Intelligence and Task planning	10		2	V
4b	How to specify Robot. Explain each term in brief	10		2_	II
5	For the shown RPR Robotic manipulator, the DH parameters table is defined as shown in figure. Calculate the transformation matrices ⁰ ₁ T ¹ ₂ T ² ₃ T ³ ₄ T and find ⁰ ₄ T	20	II	4	IV

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Sem Examination June 2023

	End Sem Examination June 2025	T			
	LI STATE OF				
	For the 2R robot, find the Jacobian Matrix using Direct Differentiation Method relative to frame {0} to {3}				
5	Find the X-Y-Z fixed angles of rotation (γ, β, α) for the following rotational matrix :	20	II	4	IV
7a	${}_{B}^{A}R = \begin{bmatrix} 0.9077 & 0.3304 & -0.2588 \\ -0.2946 & 0.9408 & 0.1677 \\ 0.2989 & -0.0760 & 0.9513 \end{bmatrix}$ Find the Z-Y-X Euler angles of rotation (α, β, γ) for the	10	III	4	IV
7b	$ {}_{B}^{A}R = \begin{bmatrix} 0.9077 & 0.3304 & -0.2588 \\ -0.2946 & 0.9408 & 0.1677 \\ 0.2989 & -0.0760 & 0.9513 \end{bmatrix} $	10	III	4	IV

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058

END SEM EXAMINATION June-2023

Program: B. Tech. in Mechanical Engineering

Class: Final Year B. Tech. (Mechanical)

Course code: BTM 754

Course: Power Plant Engineering

Date: 12 June 2023

Duration: 3 Hr. Max. Points: 100

Semester: VIII

Attempt <u>ANY 05</u> of the following questions.

• Draw neat Process diagrams /T-s Diagrams/ Figures etc. wherever necessary.

• Use Separate Graph papers for graphical solution of Q 1A) and Q2 B).

· Answers to the questions should be Brief and Specific in Legible hand writing.

• Assume suitable data wherever necessary and mention the same.

Q. N.		Ques	stion		Points	00	BL	Module	PI
1	A) Define: i) Load			,	10	1,	I,	1	1.4.1
	Factor iv) Reserve fa	actor and Exp l	lain: Significance	of each.		4	II		
	B) Construct: Chro	nological dail	y Load Curve and	l Load Duration					
	Curve from the follo	wing observat	tions.		10	1,	III,	1	
	Time	Load, kW	Time	Load, kW		4	V		1.4.1
	6 am to 8 am	3000	5 pm to 6 pm	7000		7			
	8 am to 12 Noon	10000	6 pm to 9 pm	6000					
	12 Noon to 1 pm		9 pm to 11 pm	6000		. 1	7		
	1 pm to 5 pm	10000	11 pm to 6 am	2000					
	If the Reserve capac		on is 3000 kW, Ev	valuate: i) Load			1		
	Factor ii) Plant Capa	city Factor.							
2	A) Explain: Concer	ot of Fluidized	Bed Combustion	(FBC). State:	1.0	2	I,	3	1.4.1
	Various arrangemer	its of FBC.	Describe: Working	ng of any one			II		
1	arrangement of FBC								
	B) Compare: Advar	ntages and disa	ndvantages of Dies	sel power plants	10	2,	v	5	
	over Steam power I		_	- + ;		4			1.4.1
	efficiency consumes					200			
	output. Calorific valu		-	-				1	
	isfc and iii) brake the			′ ′ ′					

3	A) Explain with					10	2	II	2	1.4.1
	Mass Curve iii) F								1	
	B) Explain: Hy	drogrph and	Flow Duratio	n Curve. The	mean					10
	monthly discharg	ge at a particula	ar hydro plant	site is given i	n Table	10	2	II,	2	1
	below. Construc	t: Hydrograph	and Flow du	ration curve.				III		1.4.1
	Month	Discharge, m ³ /s	Month	Discharge, m ³ /s						
	January	200	July	2000	-					
	February	450	August	2400	1					
	March	600	September	1800						i
	April	1200	October	1200						
	May	1500	November	800						
	June	1600	December	400						
4	A) Explain: Ess features and funct			ar reactor wit	h their	10	2	I, II	4	1.4.1
	B) Explain: Work	king of i) Press	urised Water F	Reactor (PWR)	and ii)	10	2	I,	4	
	Boiling Water Re	eactor (BWR).	Draw: Neat	sketches of b	oth the			II,	İ	1.4.1
	types of reactors a							v		
5	A) Explain: Wor				-	10	2	I,	5	1.4.1
	with regeneration,						_	II,		
	for its thermal effic		_	_	;			III		
	and T-s diagram.	,		- · · · · · · · · · · · · · · · · · · ·				111		
	B) In an open cy	cle gas turbin	e plant, air a	t 10°C and 1	har is	10	2,	I,	5	
	compressed in the				I	1,0	2, 4	V V		1.4.1
	and pressure ratio		-		i		T	•		
	regenerator of 7		_	_	- 6					
	combustion chamb				,					
	drop during heat	_		-						
	chamber. The air									
	· ·			-	_					
	isentropic efficien				1					
	before venting to				or the					
	plant. Draw: Syste									
6	B) Differentiate:		•		1	10	2	I,	3	1.4.1
	Combined Power		-		- 1			II		
	combined with sin		oine cycle (SG	1ST). Draw: S	System		Ì	1		
	diagram and T-s di	•								
	B) Explain: Base			,	1	10	2	II	1,6	1.4.1
	and adverse featur	es of i) Steam	power plants	and ii) Gas t	urbine					
	plants for its use as	Base Load an	d Peak load pl	ants						
7	A) Explain: Pollu	tion due to nu	clear power pl	ants and meth	ods of	10	3	II	4,7	1.4.1
	disposal of radioac	tive waste.					-			
	B) State: Methods	of controlling	SO ₂ emission	from thermal	power	10	3	I,	7	1 4 1
	plants. Explain: W	orking of a we	et scrubber. Dr	aw: Neat sket	ch.			II		1.4.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM EXAM JUNE2023	
DATE 14-06-2023	SESSION: Afternoon
Class: Final Year B. Tech.in Mechanical Engineering	Semester : VIII
Course Name & Code- Supply Chain Management (PE-BTM734)	Code: PE-BTM734
Total Points 100	Time Allotted : 3hour

NB. Final year B. Tech (mech) Sem-VIII

- 1. Que 1 is compulsory
- 2. Solve any 4 questions from remaining.

QN	Question Sta	atement			Points	Module	CO
Q1A	Consider a S	upply Chain of Pa	ckaged Drinking	Water. Identify the	10	M1	COI
				uirements of Each			CO ₂
			e issues / challeng	es faced by above			
	supply chain	players.					
Q1B	Prepare the C	Causes of more	vulnerability of Su	pply Chain . Draw	10	M1	CO1
		d Effect diagram t	o show more vuln	erability of Supply			CO3
001	Chain.						
Q2A				s. The buying cost	10	M3	CO2
				rrying one unit in			
				of the product is rs			
				tity discount of 2 and a discount of			
				Suggest the most			
		chase quantity per		suggest the most			
Q2B	<u> </u>	1 7 1		lata . Selling Price	10	M2	CO1
V2D			olume 2000 units.	aud . Boiling I iio	10	1112	CO2
	City	Fixed cost	Variable Cost	Total Cost			
		in \$	in \$	in \$			
	Athens	30000	75	180000			
	Brisboin	60000	45	150000			
	Lisbon	110000	25	160000			
Q3A	EV Tech com	pany manufacture	s automobile com	ponents and	10	M3	CO1,
			npanies in South A	Asia. It evaluates			CO2,
		n variety of criteri	a as follows.				CO3
	Sr.No.	Criterion		Weight			
		Quality		20			
		Price		25			
		Credit facility		15			
			elivery schedule	15			
		Service Facility	1	10			
		Lead time		10			
		Response to su		5			
			ne of the major su	applies. Refer the			
	following data	and select the be	est supplier.				

1	Sr No.	Factor	Suppli	ers						1
			Ā	В	C	D				
Į.		Quantity supplied	95	85	90	85				
		Quantity accepted	85	75	80	72			-	
		Price per unit	22	30	25	25			-	
		Credit facilities in days	20	25	25	30				
		Delivery promised in weeks	6	6	6	6				
		Delivery made in weeks	7	7	6	8	-			
		Service facilities Evaluation %	80	85	75	70				
		Lead time in week	3	2.5,	3	2	0.0			
		Response to suggestions %	87	84	86	89				
		guidelines for improving Sup								
Q3B	list of act i. Pr ii. W	the Supply Chain Electric vivities to reduce to Inventory urchased Goods Inventory /IP inventory inished goods inventory		ndustry	. Prep	are the	10	M3	CO1, CO2	
Q4A	1	benefits and pitfalls of SW	OT anal	ysis. Pr	epare	SWOT	10	M1	CO4	1
		of Metro Rail Service Supply							0.01	
Q5A	Prepare t appropria	he List of Parameters for sentely.	lecting a	Carrie	r. Ran	k them	10	M5	CO1, CO2, CO3	
Q5B	Illustrate suitable d	the Blockchain use case for liagram.	automo	bile reg	istratio	on with	10	M1, M6, M7	CO1, CO2, CO3, CO4	
Q6A	Green Pr	e Supply Chain of your chorocurement Process and Desid architecture can be useful in	scribe h	ow Blo	ckchai	n IOT	10	M1, M6, M7	CO1, CO3, CO4	
Q6B	process i	the strategies to improve to Electric vehicle manufact 4.0 technologies.	-	-	-		10	M3	CO1, CO3	
Q7A	1	Supply Chain of your choice Key areas of purchasing perfo		_		e chart	10	M3,M7	CO1, CO3, CO4	
Q7B	Illustrate	the integrated performance m	odel for	wareho	use.		10	M4	CO1, CO3	

SARDAR PATEL COLLEGE OF **ENGINEERING**

(Government Aided Autonomous Institute)

END SEMESTER EXAMINATION JUNE 2023

Program: Mechanical Engineering

Duration: 3 Hours

Course Code: PEBTM755

Maximum Points: 100

Course Name: Automobile Engineering

Semester: VIII

INSTRUCTIONS: Pinal year B. Tech (mech) Sem - VIII

- 1. Question no 1 is compulsory and Attempt any four questions out of remaining six questions.
- 2. Draw neat schematic diagrams wherever is necessary, highlight important points of answer.
- 3. Assume suitable data if necessary and mention it.

Q. No.	Questions	Point	СО	Module
Q1 A	Derive final expression for thermal efficiency of Otto air standard cycle with the help of necessary P-V and T-S diagram?	10	2	1
Q1 B	What are the issues associated with controlled operation of wiper, explain its solution with the help of a neat sketch?	10	4	6
Q2 A	Why disk brake performance more reliable compared to drum brake performance? Explain it with the help of sketch? Write short note on traction limit, friction ellipse and draw graph between friction coefficient and wheel slip ratio, give its significance?	10	2	5
Q2 B	Give all functional requirements of any type of automobile body?	10	3	7
Q3 A	 a) Draw neat sketch of multi-rail selector fork and explain how the gear interlock mechanism makes gear shift reliable? b) Estimate torque transmission capability by a three plate clutch, which has an average radius of 10 cm and it is coated using organic material (having coefficient of friction as 0.55)? After release of the clutch pedal, spring assembly applies 35 N of axial load on the clutch plate. Also estimate (all inertia loads are negligible and wheels rides without any slip) tractive effort available at road-tyre interface if N_{tl}= 0.75, N_d=0.75, mean wheel radius= 0.25 meters? 	10	2	3
Q3 B	Give the working principle of Magneto Ignition System with the help of a neat sketch?	10	3	4

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)

END SEMESTER EXAMINATION JUNE 2023

	Write a short note on battery capacity rating?			
Q4 A	With the help of neat sketch write short note on "Double wishbone suspension" system? Draw free body diagram of Quarter car model having 2 degree of freedom suspension system and obtain basic equations for both bodies?	10	1	4
Q4 B	When an automobile is steered using steering mechanism, then obtain expression for side slip angle (β) and radius of turn (R) using "kinetics of Bicycle model"?	10	1	2
Q5 A	Obtain expression for optimized gear ratio (including gear box and differential) of automobile at which automobile can be accelerated 'f' to 'f _{max} '? (consider resistance, inertia of slow and fast moving parts)	10	2	1
Q5 B	List down basic functions to be performed by brake system for satisfactory performance? What is Ideal brake force distribution and give its formula with all terminology?	10	3	5
Q6 A	Obtain expression for maximum tractive effort available in case of front wheel drive? Write short note on Independent suspension system with neat sketch?	10	2	3
Q6 B	List down three parameters of wheel alignment required to be maintained? Give significance of these parameters along with their sketch?	10	4	2
Q7 A	Give working principle of motor vehicle horn system with the help of neat sketch?	10	1	4
Q7 B	What are different types of chassis frames? Explain each type with 3 points?	10	1	7

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examination June 2023

Program: B. Tech Mechanical

Duration: 3 Hour

Course Code: PE BTM756

Maximum Points: 100

Course Name: Renewable Energy Sources and Utilization

Semester: VIII

Notes:

Final year B. Tech (mech) Sem-VIII

1) Question number ONE is compulsory and solve any FOUR out of remaining SIX questions.

2) Use of steam table, refrigeration properties table and Gamma function table is permitted.

3) Draw neat sketches wherever required.

4) Assume suitable data and justify the same.

Q.No.	Questions	Points	со	BL	Module Number
1	Solve any four out of five questions. (a) Explain the method of manufacturing single crystal silicon solar cell (b) Explain the annual speed frequency distribution curve and annual speed-duration curve. (c) Discuss the use of selective surfaces for liquid flat plate collectors. (d) Discuss the electricity production of India and compare how much is the consumption of per person in India as compare to worlds per person consumption. (e) Explain the principle of working of the solar cell.	20	1,2,3	1,2	1,2,3,4
2(a)	Compare the OTEC system working on Rankine cycle with steam power plant working on Rankine cycle.	10	1	2	5
2(b)	A photovoltaic cell has an open circuit voltage of 0.6 V and a short circuit current of 250 A/m ² at a cell temperature of 40°C. Calculate the voltage and current density that maximizes the power of the cell. What would be the corresponding maximum power output per unit cell area? Given that charge of an electron, $e = 1.602 \times 10^{-19}$ J/V and Boltzmann constant, $k = 1.381 \times 10^{-23}$ J/K	10	2	3	3
3(a)	Discuss the components of hydroelectric power plant and write the role of each component.	08	4	2	6
3(b)	Calculate the overall loss coefficient for a flat-plate collector with two glass covers by calculation. (Without using empirical formula) Given the following data: Size of the absorber plate $(L_1 \times L_2)$:1.90 m × 0.9m Spacing between plate and the first glass cover (L) : 4 cm	12	2	3	2

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examination June 2023

	Spacing between first and the second glass cover (L) : 4 cm											
- 1	Plate emis	•					-			1		
1	Glass cover emissivity (ε_c) : 0.88											
1	Concetor the (b)											
	Tyticall' I late temperature (1 pm)								- 1		1	
	7 intolent dit temperature (-ti)											
<u> </u>	Wind speed (V_{∞}) : 2.5 m/s											
	Back insulation thickness (δ_b) : 16 cm											
	Side insulation thickness (δ_s) : 8 cm Thermal conductivity of insulation (k_i) : 0.04 W/m-K											
	Thermal	conduc	tivity of i	nsulati	on (k_i)	: 0	.04 W/m-	·K			1	
	Draw ne	at sch	ematic d	iagram	of do	wndraf	t gasifie	r and			2	7
(a)	explain the biomass gasification process in detail.								10	4	2	/
	Calculate	the ac	tual energ	y avai	lable for	wind r	nachine f	or				
	which the	e cut in	speed is	14 km	ph, the d	esign s	peed is 30	5				
	kmph and	which the cut in speed is 14 kmph, the design speed is 36 kmph and the cut-out speed is 90 kmph for following										
	location.											
	Location : Indore											
	Month : July											
		Take ρ for air = 1.20 kg/m ³ .										
	Interval	July	Interval	July	Interval	July	Interval	July	10	2	3	4
1(b)	00	2.3	10-12	3.4	22-24	9.5	34-36	3.0	10			
	00-02	0.6	12-14	3.5	24-26	10.8	36-38	2.6				
	02-04	0.5	14-16	7.7	26-28	3.6	38-40	1.1				
	04-06	1.1	16-18	8.3	28-30	7.4	40-42	0.7				
	06-08	1.2	18-20	9.2	30-32	7.0	42-44	0.2				
	08-10	<i>\(\frac{1}{3}.9 \)</i>	20-22	11.3	32-34	3.7						
	Explain how geothermal energy is renewable energy. Also											
5(a)	explain the closed cycle and open cycle house heating system								10	4	2	6
	with a va	ailable	geotherm nd machi	al aqui	ifer.							
	A prope	eller wi	location	ne nas havino	a rowr	speed	of 35 km	ph and				
	rototiria	at 20	rmn Cal	culate.	theoretic	cally, t	ne powei	WIIICII	10	3	3	4
5(b)	rotating at 20 rmp. Calculate theoretically, the power which the machine can extract from the wind if (a) only wake											
	rotation is considered (b) both wake rotation and the effect of drag are considered. For part (b) assume that value of									1		

SARDAR PATEL COLLEGE OF ENGINEERING

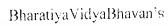
(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examination June 2023

	ε=0.012.				
6(a)	Discuss the storage dam hydro-electric power scheme with neat sketch.	10	4	2	5
6(b)	Calculate the efficiency of closed cycle OTEC system using ammonia as the working fluid and installed at a location where the warm and cold sea water streams are at temperature of 35°C and 5°C respectively. Make an allowance of about 5°C for the temperature difference required in the evaporator and condenser for transferring heat, and assume that the ammonia is evaporating at 30°C and condensing at 10°C. Take the isentropic efficiencies of the turbine and pump to be 90 and 80 per cent respectively.	10	3	3	6
7(a)	Explain the method of Bio-ethanol and Bio-diesel production in detail.	10	3	3	7
7(b)	It is proposed to set-up a wind machine on SPCE building for which long-term data on wind speed is not available. In order to assess the wind potential and select suitable wind machine, a large number of discrete measurements of hourly wind speed are made over some representative days for a couple of years. The measurements yield the following values of the average wind speed and the standard deviation: $\overline{V} = 5.8 \text{ m/s}$ $\sigma = 3.5 \text{ m/s}$ Plot the annual wind speed-frequency distribution under the assumption that it is Weibull distribution.	10	1	3	4

Data Sheet

1. Relationship between Nusselt and Rayleigh numbers.


$$Nu_{L} = 1 ; Ra_{L} \cos \beta < 1708$$

$$Nu_{L} = 1 + 1.446 \left(1 - \frac{1708}{Ra_{L} \cos \beta} \right) ; 1708 < Ra_{L} \cos \beta < 5900$$

$$Nu_{L} = 0.229 (Ra_{L} \cos \beta)^{0.252} ; 5900 < Ra_{L} \cos \beta < 9.23 \times 10^{4}$$

$$Nu_{L} = 0.157 (Ra_{L} \cos \beta)^{0.285} ; 9.23 \times 10^{4} < Ra_{L} \cos \beta < 10^{6}$$

 $h_w = 8.55 + 2.56 V_{\infty}$

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examination June 2023

Properties of Air:

Table A 4.2 Properties of dry air at atmospheric pressure

T °C	ρ kg/m³	C _p , kJ/kg-K	$\mu \times 10^6$ N-s/m ²	k W/m-K	Pr	$v \times 10^6$ m ² /s
0	1.293	1.005	17.2	0.0244	0.707	13.28
10	1.247	1.005	17.7	0.0251	0.705	14.16
20	1.205	1,005	18.1	0.0259	0.703	15.06
30	1.165	1.005	18.6	0.0267	0.701	16.00
40	1.128	1.005	19.1	0.0276	0.699	16.96
50	1.093	1.005	19.6	0.0283	0.698	17.95
60	1.060	1.005	20.1	0.0290	0.696	18.97
70	1.029	1.009	20.6	0.0297	0.694	20.02
80	1.000	1.009	21.1	0.0305	0.692	21.09
90	0.972	1.009	21.5	0.0313	0.690	22.10
100	0.946	1.009	21.9	0.0321	0.688	23.13
120	0.898	1.009	22.9	0.0334	0.686	25.45
140	0.854	1.013	23.7	0.0349	0.684	27.80
160	0.815	1.017	24.5	0.0364	0.682	30.09
180	0.779	1.022	25.3	0.0378	0.681	32.49
200	0.746	1.026	26.0	0.0393	0.680	34.85
250	0.674	1.038	27.4	0.0427	0.677	40.61
300	0.615	1.047	29.7	0.0461	0.674	48.33
350	0.566	1.059	31.4	0.0491	0.676	55.46
400	0.524	1.068	33.0	0.0521	0.678	63.09
500	0.456	1.093	36.2	0.0575	0.687	79.38
600	0.404	1.114	39.1	0.0622	0.699	96.89
700	0.362	1.135	41.8	0.0671	0.706	115.4
800	0.329	1.156	44.3	0.0718	0.713	134.8
900	0.301	1.172	46.7	0.0763	0.717	155.1
1000	0.277	1.185	49.0	0.0807	0.719	177.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examination June 2023

Gamma Function for $\Gamma(x)$

								12.7		
х	1	2	3	4	5	6	7	8	9	10
0	1	1	2	6	24	120	720	5040	40320	362880
0.05	0.97	1.02	2.1	6.39	25.88	130.72	790.83	5575.35	44881.53	406177.83
0.1	0.95	1.05	2.2	6.81	27.93	142.45	868.96	6169.59	49973.71	454760.75
0.15	0.93	1.07	2.31	7.27	30.16	155.31	955.16	6829.42	55659.8	509287.17
0.2	0.92	1.1	2.42	7.76	32.58	169.41	1050.32	7562.29	62010.76	570499.03
0.25	0.91	1.13	2.55	8.29	35.21	184.86	1155.38	8376.51	69106,23	639232.6
		4								
0.3	0.9	1.17	2.68	8.86	38.08	201.81	1271.42	9281.39	77035.56	716430.69
0.35	0.89	1.2	2.83	9.47	41.2	220.41	1399.63	10287.32	85899.08	803156.43
0.4	0.89	1.24	2.98	10.14	44.6	240.83	1541.34	11405.89	95809.46	900608.9
0.45	0.89	1.28	3.15	10.85	48.3	263.26	1698	12650.08	106893.21	1010140.79
0.5	0.89	1.33	3.32	11.63	52.34	287.89	1871.25	14034.41	119292.46	1133278.39
0.55	0.89	1.38	3.51	12.47	56.75	314.95	2062.92	15575.08	133166.94	1271744.28
0.6	0.89	1.43	3.72	13.38	61.55	344.7	2275.03	17290.25	148695.14	1427482.93
0.65	0.9	1.49	3.94	14.37	66.8	377.42	2509.83	19200.21	166081.84	1602689.78
0.7	0.91	1.54	4.17	15.43	72.53	413.41	2769.83	21327.69	185550.94	1799844.13
0.75	0.92	1.61	4.42	16.59	78.78	453.01	3057.82	23698.13	207358.61	2021746.44
8.0	0.93	1.68	4.69	17.84	85.62	496.61	3376.92	26339.99	231791.89	2271560.56
0.85	0.95	1.75	4.99	19.2	93.1	544.61	3730.6	29285.17	259173.77	2552861.66
0.9	0.96	1.83	5.3	20.67	101,27	597.49	4122.71	32569.41	289867.73	2869690.49
0.95	0.98	1.91	5.64	22.27	110.21	655.77	4557.58	36232.73	324282.91	3226614.98